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EFFECT OF TEE ACCELERATION OF ELONGATED BODIES (OF REVOLUTION
UPON THE RESISTANCE IN A COMERESSIELE G-AS*

By F. I. Frenkl

The problem of the motion of an elongated body of revolution in
an. incompressible fluld may, as is known, be solved approximately with
the ald of the distrlbutlion of sources along the axis of the body. In
determining the veloclty fleld, the question of whether the body moves
uniformly or with an acceleretion is no factor in the problem. The
presence of acceleratlion must be taken Into account in determining the
pressures actling on the body. The resistance of the body arising from
the accelerated motion may be computed either directly on the basls of
these pressures or with the ald of the so-—called assoclated masses
(inertia coefficients). A different condition holds in the case of the
motlon of bodies in a compressible gas. In thls case the finite
veloclty of sound must be taken into account. If it is assumed that
the body produces in the flow only smgll dlsturbances, the velocity
potential @ satlsfles the wave equation:

afAp = %zg (1)

where a 1s the veloclty of sound. The method of sources still remains
applicable but In computing the effect of the sources 1t 1s necessary
to make use of the retarded potential.

We introduce two systems of coordinstes, one a fixed system ?*,
the other moving with the body &, where x and & are, respectively,
the coordinates along the axis and r 1is the distance from the axis.
The coordinate € i1s computed from the nose of the body.

Tet r = ¥(t) be the equation of the body of revolution (0 < & < 1).
The position of the body i1s characterilzed by the inequalities
—£(t) <x <1 -£(t), wvhere £(t) 1is a given function of the time
charecterizing the motion of the body. The coordinates x and £ are
sonnected by the equation x = & — £(t).

#"0 Vlilanii uskoreniya na soprotivlenie pri dvizhenii prodolgovatykh
tel vrashcheniya v gazekh." Prikladnays Matematike 1 Mekhanika, Vol. 10,
no. 4, 1946, pp. 521-52L.
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Iet q = q{x',t') be the value of the linear demsity of the source

et the point x' at the inetant of time +' and R = V/(x - x')2 + e
be the distance bebtween the source and the polnt consldered. The {
potential of the disturbance veloclties is then

o(x,t) = u lq (x' t —-7> dx?

where the integral is teken between the limits determined by the

inequalitiles
- (t -3> <x'<1-f% (? -3)
& a

In order to establish the range of integratlion, we must consider
in the plane x't' a strip —F(t*) < x! < 1 — £(t') Dbetween the
lines of motion of the front and rear points of the body (fig. 1) and
the part of the semihyperbola 1n this sitrip.

0=t -Bot -1/ (x —x)2 +E,

The abscissas of the part of the semihyperbola considered form the
range of integration (fig. 1). As may be seen from the figure, the
range of integration msy conslst of one or several segments. The ends
of the corresponding arcs of the hyperbola may lie either on the line
of motion of the nose or on the line of motion of the base. In
particuler, in the motion of the body wlth supersonic velocity 1t 1s
poseible thet within the strip considered there lies an entire arc of
the hyperbola, both ends of whilch lie on the line of motion of the
nose (as will be the case, for example, for a uniform supersonic motion
or for a motlion approximating this type).

The function q(x',t') must be determined from the integral
equatlon expressing the fact that the normal component of the veloclty
of the gas on the surface of the body 1s equal to the normal component
of the motion of the body:

§Q=.—_];_a__ E‘ l’ _:_R_] 1 dl'/d.g t
on b dn ﬁq(x ’ a> r=fdx \/l+[r'(§)]2f(t) @

where O/O0n denotes differentiation along the outer normal and

t = x + f(t). In what follows we consider the derivative JF/d¢ as
small and shall give an approximate solution of equation (2). For the
assumption made, O@/On may be replaced by o0/Or. We assume for
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simplicity that the range of integration reduces to the segment (x1,%p).
Equstion (2) then assumes the form

%o
12 . __)] it = L 224 .
Tk 5 /;1 [ﬁ"- ot g b f R3 me o) _°F

—

1 Ro) dxp 31 ( __529 oxy | _ &=
—izq(xg:'b—? "d?"'R—lq X3, 5/ 3% = £1(%) at (3)

If T/1 end dr/df are considered small quantities of the first order
and thelr higher degrees or derlvatives are neglected, an approximate
solution of equation (3) will bel

a(x,t) = 2net (£)3(8) & (4)

We shall show that the error in substituting this sxpression in
equation (3) 1s a megnitude of the second order of smellness. For this

oge it 1s convenlent to write e¢r¥* for ¥ where r¥* = r*(t) is a
varlable quantity of the order of unity relative to 1 and ¢ i3 a
small constant number. The degree of ¢ in each expression then shows
its order of smaliness. We consider the order of the terms of the left
slde of equetion (3). The terms oubside the integral on the left of
equation (3) containing g as a factor for finite terms (in the general
case) will be of the second order of emalliness. In the sams way the
expression

Xp Xo
% f §.§T axt | «mcPr f Q_I% < Mre? (5)

-

1g of second—order smallness. We write the remaining term in ths form

Xo ) Xp
z La(xt,s =2) ax' = La(x,t) f axt +if (x',t) — a(x, )]
Hfjll ;q(x 8 I r RS My [a = ]R3

- ) . B . ]dx’
+)-—I-;A/;l l:qe:t—g>—cl(x:-t) ;3— (6)

1This solution (4) wes first used by Karmén (reference 2) in the case
of a uniform motion (in particular, for obtalning the approximate value of
the wave resistance).
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As a result of the computation of the first integral of thils expression
we obtain

X _
axt 1 2
r ‘/;l o3 = (D) [2 + 0(e )] (D

For the eatlimates of the differences 1in the brackets 1n the second
and third integrals of expression (6) we have, respectively

a(x*,t) - alx,t) = 0(¢®)R,  a(x',t) — a(x',t — R/a) = O(¢?)R (8)
Hence the estimates of 1integrals are of the form
Xy
o(e®)r f & < w0(e?) | (9)
x) R

so that these integrals are likewlse megnitudes of the second order of
smallness., T

us
3 (b < B)  axr - opr(e) &
_ﬁ.gg[%q_<x,t—g)j[r=fdx=f(t)%+0(62) (10)

as was required to be proven.

The expression for the veloclity potentlial after substituting in
equation (4) becomes

o) =~} [ker (s-B) 7 e (s0) -7 &) (11)

For computing the field of pressures we have the generallzed formuls
of Bermoulli

P":E:_ﬁ_@ (12)

where ©p 18 the pressure at the given point, P the pressure in the
undisturbed region, p +the demsity and, w +the modulus of the velocity.
Neglecting magnitudes of the second order w2/2 and teking account of
the equatlons

g.=x.+f(t_l§_>, %5?'=ft (t-§ (13)
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we obtaln

T2 '
/ f't—li]av'(g')+f“(‘°—§)7(g') %‘

_ [z!.éﬁl r (6 - E)L':xe %’fta (14)

In the particular case where the pressure is required on the surface
of a projectile, the motion of which approximetes to uniform supersonic
motlon, the point x, 1lies on the line of motlon of the nose of the

projectile and the last term on the right of equation (14) is equal
to zero. We obitain

2=%_1 [f( --)J ) s (s )1 ()

P

whers x; and Xx, are determined from the equation

T,2=% < -5, -7+ fa) (16)

£' — vt + ¢ and equations (15)

In the case of uniform motion =x =
and (16) becoms

—_) v2 x2* ; ax? 2 2
=I')_pRhe‘ - 7{g) = R A G UACTI L R C
* (17)

The additional pressure produced by the acceleration is therefore gilven by
the equation

X2 ' !
b L oo

l
« [ @) f [ (6) =y & HOIEEAICOE-
X3

x.a
et )] 2 ey & (18)
Xp* 1)
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where Et¥*' 1ig determined from the equation

x' = g¥ — FY(E)LY + PY(t)t — £(%) (19)

~

From the structure of eguation (18) it is easily seen that the
relative increase of the pressure arising from the acceleration has, for
velocitles comperable with the veloclity of sound, an order of magni—
tude bl/v2 where b = £M™t) 1e the acceleration. Hence for rocket
projectiles of the usuel dimengions, for accelerations not higher
than 1000 meters per gecond® and velocities comparable with the velocilty
of sound, the added pressures arising from the acceleration are
negliglibly small.

This is confirmed also by the followlng illustrative computation.
The length of the war head portlon of the shell is equael to 1 = 0.25 meter
and the maximum radius ¥ = 0.07 meter. The generator of the hesd 1is an
arc of a parabola which smoothly goes over Into the cylindrical part so
that it 1s given by the equation T = 0.56t — 1,12t2 (scale in meters).
The motlon 1ls one of uniform acceleration with an acceleration
of 1000 meters per second.2 so that the line of motion of the
projectile x = -5000t2 (t >0), x =0 (t <0).

The pressure distribution over the war head is found at the instant
of time +t = 0.5 second such that the velocity is equal to v = 500 meters
per second. The alr density p = 0.125 kilograms—lper second2., There
were obtained for the pressure distributions (with account taken of the
acceleration) end the additional pressures Op produced by the
acceleration the following values:

€ =0.05 0.10 0.15 0.20 € =0.05 0.10 0.15 0.20 (meters)

p — B = 8550,7448,5970,3588; &p = 5.0 —5.5 —11.0 —16.0 (kilogrems per meterZ)

The wave reslgtance and the corresponding added reslstence were then
obtained as

“’[ @1

1 1
Q = 2n f : (o -3) at =100, 8 = 2x f Fg—j‘gsp at = 0.13 (kilograms)
0 0
(20)
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The added pressures Op arising from the acceleration were computed from
the approximate equation (18) which for the example given has the Form

8p = / 21.5_)_ dx! — oPt ‘/"2 yt(E?) ax' + ('b‘b> f 7% (&) R axt
1

tp%0x,  t1%6x;

where

)
2(%) h@
~ 2l 3%~ = * (22)
et XL —X l’ 22" % bt X — Xp _
=& Ry a Ro

le =X — x:l*

Translated by S. Relss
Natlonal Advisory Committee
for Aeronsutics
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